Piezoelectric Transducers

Transducers are devices that convert one form of energy into another, such as the transfer of mechanical input to electrical output and vice versa. Piezoelectric transducers are transducers that can convert any form of pressure or mechanical stress into electrical energy and also translate that electrical signal into physical movement. To begin this discussion of piezo transducers, we must first understand the components of such a product. The term piezo or piezoelectric refers to electricity caused by physical pressure. Piezo transducers, which are commonly referred to as PZT transducers, are able to measure these physical energies and convert them to a proportional form of electrical energies or electrical signals. In the same sense, those electrical signals can then be utilized to generate more mechanical energy. Piezoelectric transducers can have two roles: to sense mechanical changes and convert them to electrical energy (sensor), or to receive an electrical signal and translate it into physical displacement (actuator).

piezo transducers
Piezo Direct offers piezoelectric transducers for various applications with fully customizable options.
  • Detailed Mechanics
  • Advantages and Disadvantages
  • Applications
  • Shapes

Detailed Mechanics

Detailed Mechanics of Piezoelectric Transducers

A piezo transducer can be described as a combination of a piezoelectric sensor and a piezoelectric actuator, sometimes called a piezoelectric transmitter. A piezoelectric sensor senses mechanical changes in the outside world and translates them into an electrical signal which can be used to measure those changes. In the same sense, a piezoelectric actuator can convert the electrical signal into mechanical energy or physical movement. When assembled, a piezoelectric transducer can be designed to perform either or both roles as the sensor and actuator, depending on how the transducer is constructed. A piezoelectric sensor will receive information about a mechanical force and convert that physical input to a proportional electrical output. The other half of the transducer, the piezo actuator, can then use that electrical output to perform the necessary physical adjustments. Sometimes two piezoelectric transducers are used, with one acting as the sensor and one acting as the transducer, while other assemblies just utilize one piezo transducer to perform both functions. All in all, the piezoelectric transducer converts mechanical changes into an electrical signal, then can use that signal to generate displacement. The movements are typically fine and small; however, piezoelectric transducers are extremely accurate and precise.

Piezo Hemisphere
Piezoelectric transducer hemisphere

Advantages and Disadvantages

Advantages and Disadvantages of Piezoelectric Transducers

Piezoelectric materials are extremely volatile in the sense that they have no restrictions on the shape in which they are manufactured. This gives piezoelectric transducers a significantly broader range of potential applications compared to other types of transducers. Their ability to self-generate voltage also eliminates the need for an external power source. Some applications take advantage of this property of PZT transducers and use it to harvest energy from mechanical impacts. Piezoelectric transducers can effectively operate at very low voltages and relatively high temperatures (up to their Curie point), further increasing their range of applications.

Despite their volatility, piezoelectric transducers do have shortcomings, one of which is high impedance. Since their resistance to current is high, piezoelectric transducers often generate very low voltages or outputs. This causes these devices to become reliant on amplifiers, which in some instances can induce electrical error.

Piezoelectric transducers are extremely versatile and powerful piezo components suitable for many applications.


  • Ultrasonic cleaning
  • Energy harvesting
  • Accelerometers
  • Sonar and hydrophone equipment
  • Liquid level measurement and adjustment
  • Gas and fluid flow measurement and adjustment
  • Ultrasound generation
  • Automotive lane assist, automatic breaking, parking aids
  • Sound amplification
  • Touch input response
  • Automatic doors
Ultrasonic piezoelectric transducers

Applications of Piezoelectric Transducers

Piezoelectric transducers are widely used across industrial, aerospace, automotive, commercial, and medical industries for many applications. In industrial settings, piezo transducers can be used to measure and adjust for changes in pressure, acceleration, flow, and liquid levels. In the example of flow rate, piezoelectric transducers will generate waves to measure the frequency of the liquid. Flow can be automatically adjusted by the piezo transducer to reach and monitor the defined flow rate. The adjustment of flow and liquid levels with piezoelectric transducers is commonly seen in engine, fuel, and motor functions for aerospace and automotive applications. Parking aids, lane assist, and automatic braking features all utilize piezoelectric transducers to sense the obstacle and make physical adjustments to avoid it.

Commercially, transducers can also be found extensively in musical products including microphones, keyboards, electrical guitar, etc. For example, sound production utilizes piezoelectric transducers to pick up electrical signals from microphones and amplify the sound. Many everyday consumer products also utilize piezo transducers, such as key fobs, microwaves, watches, alarms, and PIN pads. They are the function behind automatic sliding doors – a person activating the sensor (sensor) will trigger the door to open (actuator).

piezo transducer automotive application
Piezoelectric transducers are found in many automotive applications, including fuel injectors and safety breaking features.
Piezo elements are commonly used in dentistry
Dental equipment utilizes ultrasonic piezo transducers for their precise and powerful cleaning ability.

The medical industry is rapidly evolving everyday with the aid of piezoelectricity. Piezoelectric transducers are used in many machines and equipment to dose medication or even perform surgery. For example, piezo transducers can be used to sense and break up kidney stones. Piezoelectricity is an undeniably beneficial resource, and the applications for piezoelectric transducers are limitless.

Piezoelectric transducers also have an innate ability to vibrate at a very fast rate which is particularly useful in ultrasonic applications, various cleaning products as well as medical and surgical tools. Ultrasound cleaning utilizing piezoelectric transducers functions by rapidly vibrating when operating at the appropriate ultrasonic frequencies. With a piezo transducer in cleaning fluid, the rapid expansion and contraction from the vibrations exerts enough force to clean. This method of using extra force from vibrations is commonly seen in dentistry, jewelers, and electricians. See Ultrasonic Transducers for more.

Energy Harvesting

In certain cases where cabled power sources or battery power is either extremely expensive or unviable, piezoelectric transducer provide the perfect solution. They can generate energy from ambient sources, a solution commonly used in energy-light systems. Piezo transducers are also used in conjunction with sensors and very low power machines (such as wristwatches) as they can effectively operate on just milliwatts of energy.

The ambient energy capabilities of piezoelectric transducers are best utilized when power needs are periodic and close to the harvester’s resonance frequency. If the ambient energy is constant, the problem of electron loss occurs, which causes the harvester to slowly lose energy output over time.

Piezo components are used for energy harvesting
Piezoelectric transducers have limitless potential to improve the efficiency of everyday consumer products.

An example of an energy harvesting application is found in applications that generate energy by walking. By embedding piezoelectric transducers into the sole of the shoe, pressure applied from walking is converted into electrical charge that can be used to charge small appliances like old cell phones or smartwatches. The same principle applies for larger industrial applications such as trains. Piezo transducers embedded in the train tracks can convert the mechanical energy from the train’s pressure or acceleration into an electrical charge to power other devices. Another excellent example of piezo transducer energy harvesting can be seen in charging devices for internet of things, or physical internet sensors that exchange data with other sensors. These piezoelectric sensors receive ultrasonic signals in the air through vibrations. This mechanical energy is converted into an electrical signal which charges the device through energy transmission.


Disc Piezo Transducers

Piezoelectric transducers in a disc shape are circular piezo elements often found in automotive functions, sound production and amplification, liquid and fluid level measurement, and ultrasonic applications. As piezo transducers, discs are utilized in the automotive, industrial, commercial, and ultrasonic applications to detect changes and perform adjustments. Learn more about disc piezo transducers here.

Strip Piezo Transducers

Piezoelectric transducers in a strip shape are thin pieces of active piezoelectric material connected to a passive layer. Piezo strip bending transducers have either one active piezoelectric layer or two active piezoelectric layers that bend and contract to create deflection. Strip piezo transducers are commonly utilized in valve and pump control, accelerometers, touch switches/controls, and fine machinery. Learn more about strip piezo transducers here.

Ring Piezo Transducers

Piezoelectric transducers in a ring shape are used to detect changes in vibration or pressure and generate a useable electrical output. Ring piezo transducers are often found in ultrasonic and medical applications, such as in dental cleaning equipment and medicine dosing machines. Learn more about ring piezo transducers here.

Tube Piezo Transducers

Piezoelectric transducers in a tube shape are also known as piezoelectric cylinders. Tube piezo sensors are often utilized for flow and level measurements and adjustments, scanning microscopy, and microdosing, commonly found in the industrial and commercial industries. Learn more about tube piezo transducers here.

Bimorph Piezo Transducers

Bimorph piezoelectric transducers consist of two active piezoelectric layers often bonded to a metal substrate. This substrate acts as a passive layer between the two active layers of piezoelectric elements, allowing one piezoelectric layer to contract while the other piezoelectric layer expands when a mechanical or electrical input is received. This causes a bending motion that can either perform a desired task or generate a readable electrical output. Learn more about bimorph piezo transducers here.

Unimorph Piezo Transducers

Unimorph piezoelectric transducers consist of one active piezoelectric layer often bonded to a passive metal substrate. Unimorphs deform in a single direction when activated by an electrical or mechanical input and can produce an electrical or mechanical output depending on the input received.

Plate and Block Piezo Transducers

Piezoelectric transducers in a plate or block shape are commonly used for vibration and pressure measurement and adjustment. Plate and block piezo transducers are often found in ultrasonic applications and accelerometers in various industries, such as aerospace, automotive, and medical. Learn more about plate and block piezo transducers here.